Heterologous expression of the Kv3.1 potassium channel eliminates spike broadening and the induction of a depolarizing afterpotential in the peptidergic bag cell neurons.
نویسندگان
چکیده
The bag cell neurons of Aplysia are a cluster of cells that control egg laying behavior. After brief synaptic stimulation, they depolarize and fire spontaneously for up to 30 min. During the first few seconds of this afterdischarge, the action potentials of the bag cell neurons undergo pronounced broadening. Single bag cell neurons in culture also show spike broadening in response to repeated depolarizations. This broadening is frequency-dependent and associated with the induction of a depolarizing afterpotential lasting minutes. In some neurons the depolarizing afterpotential is sufficient to trigger spontaneous firing. To test the possibility that spike broadening during stimulation is required to trigger the depolarizing afterpotential, we eliminated frequency-dependent broadening by heterologous expression of the Kv3.1 potassium channel. This channel has rapid activation and deactivation kinetics and no use-dependent inactivation. Expression of Kv3.1 prevented spike broadening and also eliminated the depolarizing afterpotential. Measurements of the integral of calcium current during voltage commands, which simulated the action potentials of the control neurons and those expressing Kv3.1, indicate that spike broadening produces up to a fivefold increase in calcium entry. Manipulations that limit calcium entry during action potentials or chelation of intracellular calcium using BAPTA AM prevented the induction of the depolarizing afterpotential. We conclude that spike broadening is essential for the induction of the depolarizing afterpotential probably by regulating calcium influx and suggest that one of the physiological roles of spike broadening may be to regulate long-term changes in neuronal excitability.
منابع مشابه
The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملModel of gamma frequency burst discharge generated by conditional backpropagation.
Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is...
متن کاملDendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential.
Many central neurons support active dendritic spike backpropagation mediated by voltage-gated currents. Active spikes in dendrites have been shown capable of providing feedback to the soma to influence somatic excitability and firing dynamics through a depolarizing afterpotential (DAP). In pyramidal cells of the electrosensory lobe of weakly electric fish, Na(+) spikes in dendrites undergo a fr...
متن کاملDifferential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes.
Maturation of electrical excitability during early postnatal development is critical to formation of functional neural circuitry in the mammalian neocortex. Little is known, however, about the changes in gene expression underlying the development of firing properties that characterize different classes of cortical neurons. Here we describe the development of cortical neurons with two distinct f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 22 شماره
صفحات -
تاریخ انتشار 1998